

White Paper

Accelerating BI on

Hadoop: Full-Scan,

Cubes or Indexes?

How to Accelerate BI on Hadoop: Cubes or Indexes? Why not both? 1 +1(844)384-3844 | INFO@JETHRO.IO

Overview

Organizations are storing more and more of their data in Hadoop

and cloud based data lakes. Naturally, BI users start pointing their

BI applications at this growing data source. Traditionally, many

BI apps work by extracting data from a data source and then

loading it into the BI tool’s memory for fast processing. However,

as dataset sizes grow into the BB’s of rows, this approach is no

longer practical as the data is simply too big to be processed

in memory. In that case, most BI tools offer an alternative –

instead of bringing the data into the BI tool, push the queries live

to the data source. This is known as Live Connect (in Tableau),

Direct Discovery (Qlik), DirectQuery (PowerBI), Direct Access

(MicroStrategy) and so on. When switching to live DB access,

size limitations no longer apply. However, BI interaction speed

now depends on the performance of the data source engine.

How to Accelerate BI on Hadoop: Cubes or Indexes? Why not both? 2 +1(844)384-3844 | INFO@JETHRO.IO

The Problem

There are several SQL engines that can be used as the data source

on Hadoop. These include Hive, Impala, Presto, SparkSQL, Drill and

others. All of these tools share the same basic architecture, known as

MPP full-scan. While they are perfectly suitable for ETL and data

science workloads such as predictive modeling and machine learning,

these tools are greatly challenged when used for BI apps. The reason

for that is that BI workload has unique characteristics:

• Concurrency: A typical BI dashboard will issue numerous

queries to render results. Multiply that by hundreds of users

and the system is flooded with queries.

• Performance: BI users expect their dashboards to respond in

no more than 5-10 seconds. Moreover, it is not acceptable that

some of the charts are rendered fast – the entire dashboard

needs to be completed.

• Selectivity & Variance: A user is typically interested in a

relatively small subset of the data at any given interaction and

would use several filters to identify it. Each user, however, is

likely to be interested in a different subset.

• Ad-Hoc & Agile: With self-service BI dashboards and apps are

continuously changing with new queries being created frequently.

• Complex Data Manipulation: Multidimensional Analysis

requires joining of tables, sorting of data, large aggregations,

and other expensive operations.

SQL-on-Hadoop engines are not suitable for the type and volume

of BI queries as their full-scan architecture requires tremendous

amount of redundant scan work. These engines will need to read

the entire column (i.e. all rows) of each filter col, of each query,

every single time. A few optimizations, such as

partitions/projections/etc.’, are also not suitable for a world of self-

service BI, in which at any point of time, queries can use a different

column for filtering or sorting, even if this column is not the one

used as the column for partitioning. The result is not only slow, it

also adds to the overall load of the system and results in a cap for

the number of concurrent queries that can be served.

Workaround Solutions

In order to speed up live access of BI apps to large datasets in

Hadoop, companies engage in a range of manual and complex data

engineering projects to bridge the gap. A few common ones include:

• De-normalization: as joining data from multiple tables tends to be

slow, data can be merged into one large table and the joins can

be avoided. The trade of is that ow we have an even larger

dataset to maintain. We are no longer able to incrementally add

data – instead, we have to rebuild the full dataset frequently. This

model sacrifices the application coherence in flexibility to

overcome a data source’s inability to perform.

How to Accelerate BI on Hadoop: Cubes or Indexes? Why not both? 3 +1(844)384-3844 | INFO@JETHRO.IO

• Pre-aggregation: create a large number of aggregations to

meet every query being used by the app. This results in

ongoing maintenance, trying to keep up with app changes. In

addition, granular queries will still need to full-scan the table

and suffer from slow performance.

• Multi-partitioning of the data: creating multiple replicas of the

data with different partition keys in order to provide faster

queries to multiple filter columns.

All of these prove to be labor intensive, expensive to maintain, and

ultimately ineffective.

OLAP Cubes on Hadoop

One emerging solution is to use a commercial (AtScale, Kyvos,

Dremio, kyligence) or open source (Kylin) tools to build OLAP cubes

on top of Hadoop datasets. These can then be used to speed up

queries that can match one of the cubes. As we know from many

years of working with cubes, this approach has several limitations:

• Manual: cubes and aggregations need to be manually defined

to match application needs. This process requires experts with

deep knowledge of the data model and application queries. As

the application and data changes, a team of such experts are

required to constantly modify the cubes to keep up with

ongoing changes.

• Incomplete: cubes work well for highly aggregated queries.

However, for highly granular queries cubes are simply

impractical. For example, let’s think of a dataset that includes a

high cardinality column such as “customer_id” with MM’s of

unique values. Some queries might need to look at an

individual customer_id. Building a cube that contains this

column will result in a cube so big it will not be practical.

Applications where users tend to filter by multiple dimensions

similarly require large and therefore impractical cubes.

• Costly: As we’re dealing with big data, cubes can become very

large, and overall, even bigger than the original data itself. Such

large cubes are hard to maintain and are especially challenging

when data is update daily, hourly, or even every few minutes.

Cubes refresh and rebuild is a labor-intensive process.

When queries are unable to use a cube, they are forced to run with

one of the native SQL-on-Hadoop engine and go through a full-scan

process. Unfortunately, a partial solution that make some queries

perform fast but others don’t is often unacceptable for BI users.

Indexes on Hadoop

Another emerging solution is to fully index datasets in Hadoop using

commercial tools (Jethro) or open source (Druid). In that case, a DB-

like index is built for each column. When queries are sent from the BI

app, the indexes are used to narrow down the rows needed for the

query, instead of performing a slow full-scan. With full-indexing, we

How to Accelerate BI on Hadoop: Cubes or Indexes? Why not both? 4 +1(844)384-3844 | INFO@JETHRO.IO

can be prepared for any existing or future queries as regardless of

which columns the user will choose to filter by there will be an

index to accelerate it.

And like with any other technology, indexes have their own trade-offs:

• Costly: Indexes require additional storage and index

maintenance can slow down new data ingestion.

• Incomplete: Not all queries can use an index. Some queries

don’t use a filter at all or use a filter with such a low cardinality

that most of the rows still need to be accessed.

When a query cannot use an index, it is forced to do a full-scan

which is typically slow and resource consuming.

How about Cubes and Indexes?

As it turns out, cubes and indexes and perfectly complimentary

approaches with very little overlap. The scenarios where cubes will be

ineffective are the exact scenarios where indexes would shine, and

vice versa. Cubes work great when queries are highly aggregated,

and the cubes are small in size. This is usually the case when few, low

cardinality dimensions are used. For example, a cube including

dimensions such as gender, age group, state, or market category will

be small and highly effective. At the same time, using indexes to filter

on such dimension columns will not be highly effective as a significant

portion of the data will still need to be scanned. Conversely, Indexes

work great when queries are highly granular and looking for a small

subset of the data. For example, a query that filters by item_id

(MM’s of rows of values) and by customer zip code (1,000’s of

values) or a query that drills down to a customer or transaction

level data. For such granular queries cubes will be a poor solution

as they will need be very large because of the many hi cardinality

dimensions. Such large cubes will be impractical and slow.

Using both cubes and indexes is the only way to provide fast

performance for the full-range of BI queries – aggregated and

granular – and avoid slow full-scans altogether.

Cubes in Jethro

Jethro AutoCubes are exactly as they sound – cubes that are created

automatically by Jethro instead of manually by an expert. Jethro

monitors ongoing queries sent by BI tools and examines each of them

to see if it could be optimally served by a cube. If so, Jethro will create

such a cube using a background process and store it in HDFS. Future

permutations of this query – different filter values, any subset

combination of the dimensions / measure – will be served from the

cube instead of the full table. Jethro cubes are completely transparent

to the BI app which is only aware of the underlying tables.

How to Accelerate BI on Hadoop: Cubes or Indexes? Why not both? 5 +1(844)384-3844 | INFO@JETHRO.IO

Key features of Jethro AutoCubes

• - Cubes over table JOIN. Jethro builds two types of cubes for

queries that include joined tables. The first is a “dimension”

cube which is built based on the results of the query, after the

JOIN is performed and can be used with both star and snowflake

schemas. The second is “key” cube which is built around the JOIN

keys of the underlying tables. Such key cube can be used for a

large number of future queries as it is generic in nature.

• Support for COUNT DISTINCT aggregations. When the measure

used for a query is COUNTD Jethro will store the list of distinct

values for each cube entry instead of the overall number of such

unique values. This enables Jethro to use the cube to answer not

only how many distinct values are in a specific entry (e.g.

STATE=’AZ”) but also queries accessing multiple entries (e.g.

state IN (‘CA’, ‘NY’)).

Cube maintenance is also automated. When new data arrives,

Jethro will incrementally update all the cubes it built. As apps are

modified or new one added, or as new columns are added to the

data model, Jethro automatically adapts and creates new cubes to

accommodate them.

Because Jethro cubes are designed to work in conjunction with

Jethro indexes, Jethro will only create small cubes that are optimal

for aggregated queries. Large cubes that would be needed for

granular queries are avoided as such queries are optimized using

indexes instead.

Indexes in Jethro

Jethro indexes all columns automatically so no expert is required to

decide which cols are most important. This approach is critical for self-

service BI and agile app development as users can freely choose how

to access their data and never be concerned if a specific column is

indexed or not and what will be the performance implications of it.

How to Accelerate BI on Hadoop: Cubes or Indexes? Why not both? 6 +1(844)384-3844 | INFO@JETHRO.IO

Jethro indexes are typical DB indexes. They are technically Inverted

Lists – each col value has an entry with the list of rows that have that

specific value. When a query arrives, Jethro first evaluates all filters

and uses the index to create a working-set – a list of all rows that are

needed after applying all filters. Only then Jethro will fetch the data,

perform JOINs and apply the relevant aggregations. This means that if

a query is granular – accessing a small number of rows, it will take

little time to perform regardless of the size of the dataset.

Key features of Jethro indexes

• Indexes are implemented as hierarchical compressed bitmaps

and are stored in HDFS. An index-of-index is used to provide

direct access to each index entry, so indexes do not need to

be stored in memory.

• JOIN Indexes are used to create an index on a fact table using

the values of a col from a dimension table. This way, when the

dimension table col is used as a filter, no JOIN is needed, and

an index can be used directly

• RANGE Indexes are used when an index col has a large number

of values and queries typically filter by a range of values

• DATE Indexes are created automatically for TIMESTAMP

columns and create entries for Years, Months, Days, HRs, etc.

They are a similar RANGE indexes in the way they can cover

a date-range using a single index entry to cover a full year

instead of 365 individual daily entries.

Indexes in Jethro are Incrementally updated. When incremental

data arrives, Jethro will append the current indexes. With this

approach indexes are never locked and therefore even frequent

loading of new data has no impact on ongoing query performance.

Query optimization in Jethro

The best way to speed up a query is to minimize the amount of work

actually required to process it. Jethro uses a combination of optimization

techniques ranging from query results, cubes and indexes. When a query

arrives, it is first broken to individual subqueries and each is evaluated

separately. The optimization sequence:

• Query Result Cache

a. Results of past queries are saved in permanent storage.

When a new query arrives, Jethro first checks if the same exact

query already ran and its results were saved. If they were, the

results are returned without any additional processing.

b. Past results are automatically updated (incrementally or

full replacement) when new data arrives.

• AutoCubes

a. Jethro next checks if a cube aggregation including the

query’s dimensions and measures already exists. If not, Jethro

checks if a key cube can be used to serve this query.

b. The matching process uses the metadata of existing

cubes. They are sorted by size so if a cube match is found it

will use the smallest, and most efficient cube.

How to Accelerate BI on Hadoop: Cubes or Indexes? Why not both? 7 +1(844)384-3844 | INFO@JETHRO.IO

• Indexes

a. If no cached results and no cubes are available, Jethro

will use indexes to process the query. First, indexes are

used to apply all filters, resulting in a working set – list of all

needed rowids.

b. Next, Jethro fetches the relevant column data for those

rows and executes the SQL logic on that subset of the data.

c. Many queries can be served directly from the indexes and

don’t even require accessing of the underlying data. A

common example is BI tools sends a “SELECT DISTINCT col”

query to get the list of distinct values for a filter. In Jethro such

a query is a simple access to the list f values from the index.

• Execution optimization

a. JOIN optimization – Jethro uses a variety of techniques to

remove JOINs. These include Star Transformation, use of

JOIN Indexes, conversion of OUTER to INNER JOINs and

switching join table order after applying filters.

b. Partition pruning – if one of the filters is also a partition

key, Jethro will skip any processing (eg index search) of the

unneeded partitions. This feature is not as impactful in

Jethro as it is with Full-Scan as index filtering already

minimizes the amount of data that is accessed.

c. Multi-threading and pipelining – the execution is broken into

small chunks of data (ie TupleSets) which are all processed in

parallel across many threads. This approach optimizes

utilization of system resources and also enables returning

of initial results before the entire query is complete.

d. GROUP BY optimization – using the information from the

indexes, Jethro can predict the size of the resulting GROUP

BY and choose the most memory-optimal aggregation

algorithm for it.

e. Subquery parallelism – Jethro treats each subquery

independently and process them (when logic permits)

in parallel.

• BI Tool specific optimizations

a. Each BI tool has a certain pattern to the SQL queries it

generates. While mostly optimized, often times such queries are

complex and are hard to optimize, even by mature SQL engines.

b. Jethro has incorporated many optimization rules that

identifies specific query patterns and transforms them into a

more optimal form. For example, Jethro will “push” filters from

outer query into internal one or will be able to “extract” filters

from a CASE statement and push them into a WHERE clause.

How to Accelerate BI on Hadoop: Cubes or Indexes? Why not both? 8 +1(844)384-3844 | INFO@JETHRO.IO

Summary

Big Data platforms are successfully used to store a growing amount of

valuable enterprise data. An important way to utilize this data is to

enable BI users to access this data in a self-service way. A key to the

success of such BI on Big Data is to make it at interactive speed – as

we know, slow BI is no BI. There are multiple approaches and tools

used to improve BI performance on Big Data. They include Cubes,

Indexes and Query Caching. The right solution must combine all 3

techniques as neither one (or two) by themselves will be able to

address the full range of granular and aggregated BI queries. The

winning solution must also automate the process of applying the

acceleration strategies as relying on IT to manually define cubes or

build indexes will requires tremendous resources and slow-down the

agile nature of self-service BI. Jethro’s solution is unique in its ability

to provide fully automated Interactive BI on Big Data.

Thanks for reading!

Let’s chat and discuss how you

can accelerate your BI to the

speed of thought.

+1 (844) 384-3844

info@jethro.io

How to Accelerate BI on Hadoop: Cubes or Indexes? Why not both? 9 +1(844)384-3844 | INFO@JETHRO.IO

